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Continuously distributed defects of crystal structure are considered. The starting 
point is the Euclidean geometry of the ideal crystal lattice and the topological 
description of the distortion of the crystal structure. It is shown how the non- 
Euclidean geometry of distorted crystal structure, as well as the basic assumptions 
of the phenomenological plasticity theory concerning the deformation of a 
continuum, are related to those theories. A form for an affine connection describ- 
ing continuously distributed dislocations is proposed. 

1. I N T R O D U C T I O N  

There exist many  material structures for which the geometry o f  moving 
frames (triads, tetrads, etc.) is an especially convenient  method  o f  descrip- 
tion. These include, e.g., crystalline solids with a three-dimensional  crystal 
lattice, as well as those fo rmed f rom layers with a fiat crystal lattice (so-called 
lamellar structures, e.g., graphite).  Some liquid crystals can be also described 
in such a formalism (e.g., cholesterics and smectics, especially smectics B). 
The advantages o f  such a descript ion become clearer when the ideal material 
structure is distorted by the occurrence o f  various defects (point-line, linear, 
superficial, or  volumetric).  

Let us consider  a crystalline solid whose crystal structure is a three- 
d imensional  m o n o a t o m i c  Bravais lattice, that  is, a lattice uniquely deter- 
mined by giving one o f  its points  and three lattice base vectors (Section 2). 
In the local theory of  elastic response o f  such a material body,  this response 
depends only on the actual configurat ion o f  atoms in the macroscopical ly  
small ("physical ly  infinitesimal") ne ighborhood  of  each point  of  the crystal. 
In  such a ne ighborhood  the deformed  lattice may be considered as 
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homogeneously deformed. In this way the continuous description of an 
elastically deformed crystalline solid may be reduced (in the case of a 
monoatomic Bravais lattice) to the consideration of the basic element of 
description of its discrete structure geometry, that is, the triad of base vectors 
of  the lattice. The existence of  defects of the crystal lattice--pointline (e.g., 
inserted atoms) or linear (e.g., dislocations)--disturbs the continuity of 
distribution of these base bectors (we deal with the deformed crystal con- 
tinuum). 

Usually in the physically infinitesimal neighborhood of each crystalline 
body point, there are sufficiently many such defects in order to justify the 
assumption of a macroscopically continuous distribution in the body. In 
this case, the (macrsoscopic) continuity of  distribution of the lattice base 
vectors is preserved, but it remains nonintegrable. 

The main purpose of this paper is to establish the relations between 
symmetries and metric parameters of the ideal crystal lattice and the regu- 
larities of disturbances of them by continuous distributions of  defects of 
this lattice. 

From the formal point of  view, the geometrical methods used in this 
paper are closely related to those used in the space-time theory of tetrad 
frames (e.g., Ruiner, 1956; Stawianoski, 1985; Weyl, 1929). The fact that 
Lorentz three-dimensional rotations appear in this paper as one of  the 
objects describing symmetries in the distribution of dislocations illustrate 
that relationship. Conversely, the notion of geometrical interactions under- 
stood in the sense attributed to it in the continuous theory of defects 
(Giinther and 7,6rawski, 1985) has turned out to be useful in our analysis 
of properties of  so-called spinor connections (Srivastava, 1983). 

This work consists of two parts. In this paper (Part I) we construct the 
relations mentioned above, using the language of geometry of Euclidean 
space (i.e., the space in which both the lattice and the solid figure of the 
body are embedded). This is the language of description of experiment. In 
Part II we formulate the basic results of Part I in the language of non- 
Euclidean geometry, and in that language we continue their further analysis. 
This is the language of description of the material structure of the body. 
The basic results of this work are included in Part II. The Appendix to the 
present paper includes the designations and mathematical theorems con- 
cerning the point Euclidean space and the formulation of the Euclidean 
interpretation of Lorentz three-dimensional rotations. 

2. THE GEOMETRY OF THE CRYSTAL LATr lCE 

Let E denote three-dimensional real Euclidean vector space. A lattice 
group is a nontrivial discrete subgroup T of the additive group (E, +). T 
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is a three-dimensional lattice group if and only if there exist linearly 
independent  vectors _Ea, a = 1, 2, 3, such that 

T = {_t = n a_Ea, n" �9 Z} 

where Z denotes the set of  integers. The vectors _E~ are called basic vector 
of the lattice group T. They are not uniquely determined, because every 
other set of  vectors {_E', a = 1, 2, 3} is a set of  basic vectors if and only if 
the following condition is fulfilled: 

_E" = rboEb, _~ = II ~,a II �9 Ot(Z3), I d e t y l  = 1 (1) 

where GL(Z 3) c GL(R 3) is the group of nonsingular matrices of  integer 
coefficients. A primitive cell is the parallelepiped K(ET)  determined by the 
set of  basic vectors E r  = (_Ea), i.e., 

K(ET)={x_=xa_Ea, 0__<x"__< 1} 

The volume of this primitive cell 

VT = vol K(ET) (2) 

is an invariant of  the choice of  the lattice group basic vectors. Let E denote 
the point Euclidean space on E (see Appendix).  The lattice (three- 
dimensional) S denotes a set S c E such that (see Appendix) 

T(S) = {_a �9 E: %(S)  = S} 

is a certain three-dimensional lattice group. Further on we will not distin- 
guish vectors _a from the lattice group T(S) from the translations % �9 T(E) 
(see Appendix) and we will consider only three-dimensional lattice groups. 
Vectors _a e T(S) are called lattice vectors and the basic vectors _E~ are called 
base vectors of the lattice. The lattice S on which its lattice group T(S) acts 
transitively is called the Bravais lattice. Bravais lattices have the form 

S = T(S)P 

where P �9 S is an arbitrarily chosen point of  the lattice. In this paper  we 
will consider only Bravais lattices. The lattice line (of a Bravais lattice) is 
a straight line crossing a point of  the Bravais lattice and parallel to a base 
vector of  this lattice. 

The symmetry group of the lattice (or the crystallographic group) is a 
maximal subgroup G(S) of Euclidean group E(E) ,  such that 

3 0 ~ S  G(S)={(_a,A)�9 dP(o,_A)(S)=S } 

where d)= {qb(_~,_A)} is the action of t h e  group E(E)  in E, defined by the 
localization at the point O �9 S (see Appendix).  
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The point group of the lattice (or the crystallographic point group) 
P = P(T)  of the lattice S with the lattice group T = T(S), is a subgroup of 
the orthogonal group O(E) defined by 

P ( T ) = { Q ~  O(E): (o, Q)~ G(S)} 

The symmetry group G(S) of the Bravais lattice S with the point group 
P ( T )  has the decomposition in the form 

G(S) = T(S)P(T(S) )  

and has the structure of the semidirect product of groups T and P ( T )  (see 
Appendix): 

G(S) -~ G(P, T) = TD P ( T )  c E [] E(E)  

Let us denote by T the lattice group of the lattice S. If the basic vectors 
of  the lattice group E r  = (_E~) are identified with base vectors of  E, we 
obtain a co-ordinate system on E, which will be denoted by ~T; such a 
system ~:r is called the proper system of the lattice S (with the lattice group 
T) (Morzymas, 1977). The symmetrical matrix g T ~ GL+(R3) defined as 

= II g~b II, gab = E_ a" -Eb ( 3 )  

is called a lattice metric matrix associated with its proper system er. With 
the change of  the proper  system er  for r the metric matrix gT is transformed 
according to the rule 

_gr = 7'gry, (det _g~-)1/2= (det gr)  '/2 = Vr (4) 

where 3' e GL(z3) is a matrix by equation (1), t denotes the transposition, 
and Vr is the volume of  the primitive cell defined by (2). 

Orientation of the lattice means that all proper  systems (of that lattice) 
under consideration are oriented in the same manner. For the oriented lattice 

v~ = E , .  (_E2 x g3) > 0 (5) 

where a x b denotes the vector product. 
Let us denote by R3(~ :a) the space R 3, whose points are by standard 

denoted by ~: = (sea), and denote by R3(~ :~) the space R3(~ a) with the metric 
form g defined by 

g (~, ~:) -- g~b~: a scb 
1 2 1 2 

(6) 
g = II gab II = _g', det _g > 0 

The space R3(~ :~) whose metric form g is defined by the metric matrix _gT 
of the oriented lattice S with the lattice group T will be denoted by R3(s ca) 
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and called proper metric space of the (oriented) lattice S (associated with 
the proper  system ~:r)- This definition implies that the space R~(~ :a) satisfies, 
independent of the choice of the proper system ~:T of the (oriented) lattice 
S, the following condition: 

(det _g)1/2 = Vr (7) 

where Vr is the volume of the primitive cell [formulas (2) and (5)]. This 
means that the nonmetric properties of the oriented lattice can be described 
by the unimodular space R3(~:a), i.e., the vector space with the fundamental 
group SL(R3). Therefore, the distinction of the class of the proper metric 
spaces can be connected with the distinction of the group H ( T )  of the 
unimodular point symmetries of the lattice: 

H ( T )  = {A ~ SL(E): ~a,A)(S) = S} 

where T = T(S)  denotes the lattice group of the considered lattice S and 
SL(E) is the special linear group (see Appendix). The semidirect product 
of groups T and H (see Appendix) 

G(H, T)= T ~ H ( T )  

we will call the group equiaffinic symmetries of the lattice. 
Let us denote 

Og( R 3) = {_Lc GL( R3): _U_g_L= _g} (8) 

g = gt, det _g > 0 

The matrix S_T ~ GL(R 3) such that 

g = gT = S_'TS_T (9) 

is called the Lamd metric matrix (Rumer, 1956). From (8) and (9) it follows 
that 

Og(R 3) = _ST'O(R3)_ST (10) 

i.e., Og(R 3) is conjugate to O(R  3) in GL(R3).  It is easy to see that if _ca, 
a = 1, 2, 3, is a base of E such that 

E_ a = S_Tea, S T = SOb e,~ | ~ GL(E) 
(11) 

e-a" -eb = ~ab, _Ca. e b _~_ ~b 

then the matrix II s~ II is the Lam6 metric matrix. So, the basis (_ea) can be 
treated as the one defining the universal lattice of reference, which allows 
one to describe an arbitrary lattice in terms of the Euclideam geometry of 
space R 3. 
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The proper system ~:r induces the following group isomorphisms: 

T_~ Z 3 

R(T)-~ O(Z 3) = O(R 3) ~ GL(Z 3) 
(12) 

H ( T) = SL( Z 3) = SL( R 3) n GL( Z 3) 

G(P, T)=Z3DO(Z3), G(H, T )=Z3nSL(Z  3) 

From the Iwasawa decomposition of the group SL(R 3) [see Appendix, 
(A3)] it follows that 

SL(Z 3) = K ( Z  3) W(Z 3) 

K ( Z  3) n W(Z 3) = {_/} (13) 

where / is the unit matrix, and 

K ( Z  3) = SO( R 3) n SL( Z 3) 
(14) 

W(Z 3) = W(R 3) n SL(Z 3) 

and it has been taken into consideration that D ( R  3) n SL(Z 3) c K(Z3). 
Isomorphisms (12) and formulas (9)-(11)) allow us to define the 

following representation of the point groups P(T)  and H(T)  in the space 
R3T(~a): 

Pg(T) = _ST'O(Z3)Sr c Og(U 3) 
(15) 

Hg( T) = _ST~ SL( Z3) S_ T c SL( R 3) 

From that and from the decomposition (13) it follows that 

Hg( T)= SPg( T) Wg( T) 

Wg(T)=ST1W(Z3)_ST, SPg(T)=Pg(T)nSL(Z 3) (16) 

SP~( T) c~ Wg( T) = {_ / }  

with [Appendix, (A6)] 

V_A~SPg(T), x (A)=t r_A=l+2cosO~Z 

-1-<x(_A) <3  for 0 c (0, 2~-) (17) 

X(1)=3 for 0=27r 

and 

V A~ Wg(T), x(_A) = t r  _A=3 (18) 

In the next section we will see that the properties (16)-(18) of the point 
groups of the lattice are strictly connected with the topological classification 
of discrete linear lattice defects of nontranslational type. 
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3. DEFECTS OF THE CRYSTAL STRUCTURE 

Let us consider a monoatomic crystal whose lattice is a Bravais lattice. 
In the local theory of the elastic response of such a material body, this 
response depends only on the actual configuration of atoms in the macro- 
scopically small ("physically infinitesimal") neighborhood of each point of 
the crystal. In such a neighborhood the deformed lattice can be considered 
as being homogeneously deformed. This means that locally, the deformed 
Bravais lattice is also a lattice of such a type. Thus, the description of  such 
a material continuum can be based on the consideration of a continuous 
distribution of the vector bases. 

Let us denote by A the set of all Bravais lattices in E. It follows from 
the isomorphisms (12) that in the algebraic sense, this set has the structure 
of the quotient space G+(R3),/S(Z3),, where G+(R 3) =R3~GL+(R3), 
S(Z3):Z3t:3SL(Z3), and G ,  denotes the embedding of  G c  G (R  3) in 
GL(R4), described in the Appendix [formulas (A1) and (A2)]. In other 
words, there exists a one-to-one correspondence (Rogula, 1976) 

S ~ A<--> S, ~ G+(R3),/S(Z3), (19) 

The topology in the set A can be introduced by the demand that the 
correspondence (19) should be a homeomorphism. With such a topology, 
A is a path-connected topological manifold (Rogula, 1976). This manifold 
reflects the deformation-transformation properties of the considered crystal- 
line bodies in the following manner. 

Let ~ be a contractible, crystalline, three-dimensional body of the 
considered type and let 

_X: ~ x I - - > E ,  I = ( 0 ,  z) 
(20) 

_x(P, 0) = o e ,  O r E 

describe the deformation of this body (see Section 4). If  the crystal structure 
of the body in the nondeformed state is described by the field of bases 
Ero = (~a) constant on ~ and corresponding to the Bravais lattice So, then 
the field of  bases Er(p)( t )  = (_Ea(P, t) of the form 

_E~(P, t ) =  F(P,  t)_Ea 
(21) 

F(P,  t) = V_x(P , t), det _F(P, t) > 0 

describes locally certain Bravais lattices S=S(P, t) with base vectors 
_Ea(P, t), a = 1, 2, 3. So, we can represent the deformation process of the 
considered body in the form of the deformation process of the crystal 
structure 

,~: ~ •  (22) 
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and that 

(P, o) = So (23) 

The theory of discrete defects of the crystal structure can be formulated 
analogously to the theory of  the irremovable distortions of that structure 
(Rogula, 1976). Namely, suppose that for the body considered, a certain 
local crystal structure So ~ A is distinguished. The remaining structures S ~ A 
can be considered to be distortions of So, the distinguished structure So 
being the undistorted. Let 

S: ~3~A (24) 

describe the distorted crystal structure of the body in the form of the 
distortion field. The question is whether a continuous structure deformation 
process (22) exists such that 

A (P, 0) = So 
(25) 

X (P, r) = S(P)  

In the mathematical formulation, the question is whether the mapping S is 
null-homotopic. A mapping S that is not null-homotopic describes an 
irremovable distortion of the structure. 

_ If  the body ~ is contractible, then each continuous distortion field 
describes a removable distortion of the structure (beacuse A is path- 
connected). This allows us to reduce the topologcal description of the 
distortion of  the considered structure caused by the presence ,gf the defect 
in the Bravis lattice to the consideration of  A-space and a body that can 
itself be contractible but distorted in a discontinuous way. A contractible 
body from which a single, internal point is removed corresponds to a point 
defect distortion. An unbounded body from which a straight line was 
removed corresponds to a line defect distortion. It turns out (Rogula, 1976) 
that such a defined point defect does not determine the irremovable distor- 
tion of the structure. The linear defect determines the irremovable distortion 
of  the structure. The counterpart to this conclusion, with the topologically 
different character of distortions caused by the occurrence of linear or point 
defects, is the following distinction, intuitively accepted in the literature 
concerning lattice defects (e.g., KrSner, 1960). Namely, the dislocations are 
defined as internal imperfections of  the lattice. But the point defects, in the 
form of foreign atoms (so called extramatter), must be externally introduced 
into an ideal crystal or a crystal with dislocations, and that is why they 
should be called external imperfections of the lattice. 

The topological classification of discrete linear defects of a crystal 
structure can be reduced to the consideration, in the set of matrices 
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G+(R3)(GL(R4)), of the following relation p of affine equivalence (Rogula, 
1976): 

AlpA2 r 3B ~ G+ ( Ra)oA2 = BA1B -l 

where A denotes the matrix in the form (_a, _A) oAppendix, (A2)]. Dislocations 
(line defects of the translation type) correspond to the class [3,] of this 
relation, where 

3 , = ( _ a , ! ) -  _o r _a c Z 3 
(26) 

tr 3 , = 1 + t r ! = 4  

Disclinations (line defects of the rotation type) correspond to the classes 
[3,(0)], where [see (17) and Appendix, (A6)] 

3,(0) = (o, 0 ( o ) ) -  o ~ (o, 2~r) 

tr 3,(0) = 1 +t r  Q(O) = 2(1 + cos 0) < 4 (27 

O(o) e K ( Z  3) 

There also exist linear defects of simple shear type, which correspond to the 
class of elements of the form [see (16), (18), and Appendix, (A5)] 

y(m, n, k) = (o_, A(m, n, k)) 

A(m, n, k)6 W(Z3), m2-t- n2h-k2~ 0 (28) 

tr y(m, n, k) = 1 +tr  _A(m, n, k) =4  

The element 

e = (_o, 1 ) - -  tr e = 4 ( 2 9 )  

corresponds to an irremovable distortion, which can be realized in a ring 
by cutting it in the radial plane and turning one of the cut surfaces by 27r 
with respect to the other. 

The discrete linear defects described by the formulas (26)-(28) are 
topologically nonequivalent, that is, we cannot reduce a linear defect of 
one of these types to a linear defect of another type through a continuous 
deformation of the structure. It follows from (27) that if tr y(01)~ tr y(02), 
then the linear defects of rotation type corresponding to the classes [7(01)] 
and [y(02)] are also topologically nonequivalent. 

Usually, in the physically infinitesimal neighborhood of each crystalline 
body point, there are sufficiently many line (or point) defects to justify the 
assumption of a macroscopically continuous distribution in the body. In 
this case, the (macroscopic) continuity of distribution of base vectors of 
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the distorted lattice is preserved, but it remains nonintegrable. This signifies 
the existence of  the distribution of lattice groups 

T= T(P), P e ~  (30) 

determining the field (24) of  distortions and such that, if 

ET(p)=(E~(P)), P e ~  

_E~(P) = ~bSba(P) (31) 

where _Ea, a = 1, 2, 3, is a constant on the ~3 lattice base vector field corre- 
sponding to the undistorted structure So, then there does not exist a deforma- 
tion of the body _)( : ~3 + E such that 

V P e ~  Eo(P) = F (P )~o  
(32) 

_F(P) = V x ( P )  

The nonintegrable distribution of the vector bases (31) endows the 
body ~ ,  as a subdomain of  the Euclidean-point space E, with an additional 
geometrical structure. We will take this into account, assuming that the 
body ~ ,  with the crystal structure distorted in the smooth way, is a three- 
dimensional and orientable ditterentiable manifold, which can be mappped 
ditteomorphically on a certain domain in the Euclidean, three-dimensional 
point space E. We will assume, in order to simplify the considerations, that 
this is a simply connected manifold of the C a class. In each of tangent 
spaces Tp(~), P e ~ ,  of that manifold ~ ,  there acts the lattice group T(P) 
with the basic vectors _Ea(P) e Tp(~), a = 1, 2, 3, determining the Bravais 
lattice S(P) in this tangent space. But we cannot compute the metric 
parameters of the lattice S(P) ,  because the space Te(~) does not possess 
the metric structure. In this paper we propose the following: 

Postulate of Metric Uniformity. For each point P e ~ ,  the space Te(9~) 
considered together with the proper system ~T(e) of the lattice S(P) has a 
geometric structure of the proper metric space associated with the proper 
system ~T0 of an undistorted lattice So. 

3 a According to the above postulate, a metric space Rr(e)(~: ) is assigned 
to each point P e  ~ ,  and has the following form [see formulas (3)-(7)]: 

R3(e)(s r = (Te(~) ,  ET(p), gro, Vro) 
(33) 

Vro = (det _gT0 ) 1/2, _gTo = II gab I1 

This means defining on ~ a Riemannian metric tensor _g(P), P e ~3, such that 

_Ea ( P)g_( P)_Eb( P) = gab = const (34) 
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i.e., the metric structure of the distorted lattice is represented in the non- 
Euclidean space ~ by the metric structure of the undistorted lattice So. 
This representation can be interpreted as corresponding to a distortion of 
the lattice (e.g., by dislocations) that has no influence on the local metric 
properties of  the crystal structure of the body (Krrner ,  1985). 

The postulate of metric uniformity distinguishes the matrix group 
SL(R 3) as the group acting in every one of  the tangent spaces, and including 
local symmetries of the material structure described by the considered 
manifold [see formulas (15) and (16) and the commentary after formula 
(7)]. In this paper we will make use only of the orthogonal symmetries 
described by the group Og(R 3) formulas [(8) and (15)]. 

If the material structure is subject to an evolution process, then in the 
formulas (30)-(34) there appears a parameter in the form of time t, e.g., 

Er(p)(t)=(E~(P,t)), P~!~ ,  t a(O, r) (35) 

But since we consider only geometrical problems connected with the distri- 
bution of defects, this dependence on t is not essential, Therefore, we omit 
this parameter in the formulas. 

4. D E F O R M A T I O N  O F  T H E  B O D Y  

From the definition of  the body (Section 3), it follows that there is a 
three-dimensional differentiable manifold ~ such that there exist global 
diffeomorphisms 

K: ~ E (36) 

The ditteomorphism (36) as well as the image ~K = K(~) are called the 
configuration of the body. Let K be a certain distinguished configuration 
subsequently called a reference configuartion. Let us denote by XK the 
coordinate system on ~ ,  defined by 

XK: ~ R  3 
(37) 

XK(P) = (xA(p))r OK(P) = xA(p)_eA 

where O e E is a fixed point and _CA, A = 1, 2, 3, is a certain orthonormal 
base in E: 

E-A" e-B = ~AB (38) 

If  a/aX a is the natural base of the coordinate system X~ on ~ ,  i .e.,  

V f e  C~ a ] a(f~ (X~(P)) (39) 

m 

OX A I P ( f ) -  OX-----~ 
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then we will denote 

0 I (40) _e a E K, P] = "~--~ e 

The fixedness of the reference configuration K allows us to identify the 
body ~3 with its image ~K under the mapping K, and to identify the base 
eA[K, P]  with the base _eA. Then the moving frame on ~ of the form 

_Ea(P) = eA(xn(P))_eA[K, P] (41) 
a 

can be identified with the moving flame on 2)K of the form 

E_a(X ) = e A ( x B ) ~  A 
a 

(42) 
X c ~ K ,  O X  = xA_EA 

and the tangent space Tp(~) with the fixed natural base of the form (40) 
can be identified with the vector space E with the fixed base (38). 

The deformat ions  of the body ~ are called diiteomorphisms of the 
following form: 

where ~ and K are configurations. The motion of the body is called the 
ordered one-parameter family of configurations {~,, t ~ I}, where I = (0, ~') 
is a time interval. It is convenient to choose the configuration ~o = ~o(~) 
as the reference configuration for the description of the deformation of the 
body in its motion. Let us denote 

A t = ~JyO/flol." ~fO"-> E 
(43) 

x ( X ,  t) = ; t , ( x ) ,  x ~ ~o 

If ~ o  : E ~ E is a localization of the affinic strcture at the point O ~ E (see 
Appendix), then X will denote the localization of the deformation X at O 
defined by 

2": @0 •  ~ o = ~ o ( ~ o )  (44) 

_x(OX, t) = Ox(X , t) 

If  DX_t(X),  _)6(X)=_x(X, t), is the Frechet derivative, then the tensor 
_F(_X, t )~E |174  such that 

V_vcE, D x t ( X ) ( _ v ) =  F(X_, t)_v, _X ~ ~ o  (45) 
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is called a deformation gradient and it is written as 

_F( _X, t )=  V x(_X , t) (46) 

We will also denote i f (X ,  t ) =  _F(OX, t). 
In the coordinate description of the body motion, it is convenient, 

because of  the independence of the motion from the choice of the reference 
configuration, to consider a second fixed orthonormal frame x(O) = (0, e k), 
different from the frame X ( 0 ) =  (0,_ca) used in the description of the 
reference configuration: 

gk" e_l = 6kt (47) 

The space E with the fixed frame x(0) and the space E with the fixed base 
(_ek) can be identified with the space R 3. 

The deformation of the body during its motion can, with the already 
mentioned identification, be described by a vector function of  the form 

X = ~ ( X ,  t) = ) ( . k ( x A ,  t )ek  

X_ = xk_ek; X = X A E A  (48) 

X k = x k ( x  A, t) 

Then the deformation gradient has the following form: 

if(X_, t) = FkA(X_ , t)_ek| a 

Fka(X,  t )=  xkA(X  B, t )= o x k ( X  ", t ) /OX a (49) 

Let us consider the deformation as the introduction on E, by means 
of the formulas (48) and (49), of  a one-parameter family of global curvilinear 
coordinate systems. Let us denote 

X = x k ( x  A, t)e_k , X = X A ( x  k, t)_e A (50a) 

x k ( X A ( x  I, t), t) = X k (50b) 

xkA(x ,  t) oxk(X,  t) x A k ( x ,  t) - -oXA(x '  t) (50C) 
O X  A , Ox k 

X A = X A ( X  , t) = OAX - = x k A ( X ,  t )ek ,  X = ( X  A) (50d) 

X A = x A(x ,  t) = X a k ( X ,  t)_e k, X = (x k) (50e) 

where 

(51) 
x_A(x(X, t), t)" X B(X, t) = x A k ( x ( X ,  t), t)XkB(X, t) = 6 A 

The so-called right Cauchy-Green tensor is the metric tensor _C defined by 

C_ (X_, t) = fit(X_, Off(X_, t) (52) 
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where A B  denotes the simple contraction of tensors, and _A t denotes the 
transposition of _A. In the coordinates, 

C_ (X_, t) = CAB(X , t)_EA@_E B (53a) 

C A B ( X  , t )~--X_A(X , t ) "  _XB(X , t)= x k A ( X ,  t ) X I B ( X ,  t)t~kl (53b) 

Let 

02x k OX c 
OB_XA(X; t )  o x B o x A  Ox k _xc(X, t) 

= FBAC(X, t )xc(X,  t) (54) 

F B A c ( X ,  t) = Cco(X, t)rBAO(X, t) 

Then (Goedecke, 1974) 

FBAc(X, t )= X_c(X , t)" OB_XA(X, t) 

= I ( tgBCAc "~- OACBc -- OcCBA ) (55) 

i.e., FAB c (X, t) is Levi-Civita connection for the right Cauchy-Green tensor. 
On the other hand, the field of vector bases (X_A(X, t)) determines the 
teleparallelism connection AABC(X, t) of  the form 

ABAC (X, t) = - X C k ( x ( X ,  t), t) OBXkA(X, t) (56) 

Here we have 

ABAC(X, t )= --X_C(x(X, t), t)"OBXA(X, t) 

=--FBAC(X, t) (57) 

SO that the condition of the symmetry of the Levi-Civita connection (54) 
covers with the condition of the vanishing of the torsion tensor of the 
teleparallelism connection (56): 

2SAB C = A A B  C -- ABA C = F BA C -- F AB C = 0 (58) 

where 

S_ = - -X_A|  A = S A B C X A | 1 7 4  

_XA. _X B = ~ B  
(59) 

If (XA) is any field of vector bases, then the torsion tensor _S vanishes if 
and only if there exists a curvilinear coordinate system such that fields _XA, 
A = 1, 2, 3, are its natural base vectors [i.e., (50d) holds]. 
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Because 

193X k 

0 C OBX_A = OX C O X  B O X  A -ek 

= (Oc FBA D + FAn ~ FcED)X_D (60) 

then the tensor RaBc ~ defined by 

R a n c ~  = 2_x ~ 0En OcjX_A (61) 

covers with the curvature tensor of the Levi-Civita connection F A n  C 

(Goedecke, 1974) 

RAnG D = 20[BFclA ~ + 2F A[cEFB]E D (62) 

and vanishes: 

RAnC ~ = RAnCD(C(X,  t)) = 0 (63) 

Conversely, if _C(X, t) is a given metric tensor and the condtion (63) is 
satisfied, then there exists a deformation for which C_(X, t) is a right 
Cauchy-Green tensor. Because of this, the condition (63) is called in 
continuum mechanics the condition o f  compatibility (Fosdick, 1966). 

By RAB and EAn we denote the Ricci tensor and the Einstein tensor, 
respective/y: 

RAn = RCAB C 

EAB = RAB --1RCAB, R = cABRAB (64) 

and by eAnc and e Anc we denote the basic triveetors related to the metric 
tensor _C: 

eABC = eAac(detC_ ) 1/2, e ABe = eanC (det _C) -~/z (65) 

where eABC = s are alternating symbols. Let us denote 

RABCD = CDERABc E E AB = c A C c B D E c D  (66) 

We have the representations 

E An = leACDeBEFRcDEF,  RABCD = e A B E e c D p E  EF (67) 

from which it follows that the condition (63) is equivalent to each of the 
following two conditions (Fosdick, 1966): 

RAn = 0 (68) 

o r  

EAB = 0 (69 )  
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So, the deformation induces on the body the one-parameter family of 
the fiat Riemannian metric tensors 

C(P, t) = CAB(XA(p), t)EA[K, P]| P] (70) 

where _eA[K, P] is the dual covector to the vector _eA[K, P] and CAB(X, t) 
is given by (53b). It is easy to observe that, irrespective of the choice of the 
reference configuration, 

_Ct = fit*(_8), _Ct(P) = C(P, t) (71) 

where 8_ is the Euclidean metric tensor on E, ~bt is an actual configuration, 
and ~b,* denotes the "pullback" oftensors by ~b, (Marsden and Hughes, 1978). 

5. DEFORMATION OF THE MATERIAL STRUCTURE 

Let us consider a crystalline material body with a continuous distribu- 
tion of crystal lattice distortions, defined by the postulate of metric unifor- 
mity. In this case the "Euclidean picture" [cf. the formulas (37)-(42), (53), 
and (70)] of the body material structure is determined by the nonintegrable 
("anholonomic") distribution of the basic lattice vectors E 7-~x)= (_Ea(X)), 
X ~ ~o of the form 

E _ a ( X )  - e A ( x ) _ e A ,  _8 A " "E B -- t~AB ( 7 2 )  
a 

and by the metric tensor of the form [cf. (34)] 

g _ ( X )  = g A B ( X ) E A ( ~  B = gabE_ a ( x ) ( ~  E_ b ( x )  
(73) 

a b 

gAB = e a ( X )  eB(X)g,~b 
where (_Ea(X), a = 1, 2, 3) is the base dual to the base Er(x): 

a A b a 
_ E a ( X )  = e A ( X ) E  , e a ( X ) e A ( X )  = 6ba, e A ( X ) e n ( X )  = t~,~ 

a a 

(74) 

In general, the metric tensor _g does not satisfy the condition of compatibility 
(63). 

Let Xo ~ ~o be an arbitrary fixed point. Let us denote 

_E. = eA(Xo)_eA, S a = eA(Xo)  
a a a 

From (72) and (75) it follows that [cf. (31)] 

(75) 

b 
_Ea(X)  = ~_EbSba(X), S b a ( X )  = S A e A ( X )  ( 7 6 )  

a 
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i.e., the matrix 

_S~(X) --II S%(X)II (77) 

determines the field of distortions describing nonintegrable distortion of the 
crystal structure. It is the differentially geometric counterpart of the topologi- 
cal irremovability of structure distortions (Section 3). 

Let i f (X,  t) be a deformation gradient and [cf. (49) and (50)] 

X_A(X , t) = i f(X,  t)EA 
(78) 

_x~(X, t )=  _F(X, t)E_a = S~AX_A(X, t) 

Then [cf. (53)] 

_C(X, t )=  C~b(X, t ) ~ |  b 

C.b(X, t )=  x.(X, t)" Xb(X , t )= sASBCA~(X, t) 
a b 

(79) 

In plasticity theory so-called elastic distortion is considered, which in our 
case can be defined with the in general nonintegrable, tensor field A(X, t) 
E |  m E |  such that 

X a(X , t)= _A(X, t)_Ea(X, t) (80) 

where _Xa(X, t), a = 1, 2, 3, is a field of deformed base vectors of the ideal 
reference lattice [equation (78)]. It follows from (72), (75), (78), and (80) 
that 

if(X, t)-- A(X, t )P(X) ,  det F = d e t  A det P > 0  (81) 

where P ( X )  (or P(X, t) if the material structure of the body undergoes an 
evolution] is the nonintegrable, nonsingular tensor field of the form 

a 

_P(X) = PAB(X)_eA| PA~(x )  = eA(X)SB (82) 
a 

Because 

_P(X) = 1r _Ea (X)  = _Ea (83) 

then the field P ( X )  can be identified with the so-called plastic distortion 
considered in plasticity theory. So, we have obtained, as is known from 
plasticity theory, the decomposition (81) of the deformation gradient for 
elastic and plastic distortions (Sidoroff, 1975). 

From (52) and (81) the representation of the right Cauchy-Green tensor 
follows: 

_C(_F(X, t ) )=  _P(X)tC_(_A(X, t))_P(X) (84) 
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or, equivalently, 

G ( X ,  t ) =  P ( X ) * C ( f f ( X ,  t ) ) P ( X )  t 

where P * =  (p- l ) , ,  and 

If 

then 

G(X, t) = C(A)(X, t) 

A ( X ,  t) = a kA(X, t ) e k |  A 

Trzr 

(85) 

(86) 

(87) 

G ( X ,  t)  -- GAB(X, t)_~A| B 

GAB(X, t) = akA(X, t )a 'B(X,  t)Sk~ (88) 

a b o 

= e A ( X ) e B ( X ) C ~ b ( X ,  t) 
o 

where C~b(X, t) is given by (79). The metric tensor G(X, t) is invariant 
with respect to rotations in the configuration space, i.e., 

i f ( o _ a )  - _C(_A), OQ' = 1 (89) 

and because of  this, it is a more convenient measure of the material structure 
deformation than the elastic distortion. In plasticity theory the so-called 
elastic strain tensor is also considered defined by 

= ~( _o - g )  ( 90 )  

with the property [cf. (73), (79), and (88)] 

E_ = Qc:> C~b(X, t) = g~b (91) 

The tensor S(X)  of the form [cf. the formula (59)] 

S =  - E ~ |  ~ = S j E ~ |  E b |  Ec (92) 

can be associated with the distribution ET(X) of the lattice base vectors. 
This tensor we will call the torsion tensor o f  the material structure. Since 

dE a = Sbc~E b ̂  E ~, Sab c = --Sba c (93) 

therefore, taking into account that d(E~. E b) = 0, we obtain [see formula 
(57)] 

to ~ = - E  c. d Ea = -Sb~CE b (94) 

which means that the geometric object F = ( [ ' ~ b )  defined by 

F~c = - -Sb j  (95) 
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determines, together with the relations (74) and (94), a certain affine connec- 
tion on the body. This is an affine connection of the form [see (37)-(42)] 

toa(p) = r~(xK(p))~a[~, p ] ,  

tog(P) = r~c( X~( P ) )toc( p ), 

a 

r =ea 

= -sg  

(96) 

The formulas (96) define the infinitesimal "affine displacement," i.e., linear 
transformation, with components o~ a (translation) and to g ("affine rotation") 
generating one space tangent to ~ (considered as an affine tangent space) 
from another (Bilby, 1968). So, this formula can be accepte d as the basis 
for defining the infinitesimal counterparts of discrete, linear defects of the 
crystal lattice, discussed in the Section 3. Namely, we will assume that the 
nonintegrability of the forms toa describes the occurrence of line defects 
of translation-type dislocations in the body, whereas the nonvanishing of 
the forms tog describes the occurrence of line defects of the rotation or 
shear type. But now the lack of dislocations (that is, the integrability of the 
forms toa) also denotes the lack of other line defects [vanishing of forms 
tog together with the vanishing of the tensor S; see the commentary after 
(59)]. We suppose, therefore, that in the infinitesimal Version, line defects 
of nontranslational type are a type of distribution Of dislocations rather 
than a separate kind of line defect. Because the tensor S is the torsion 
tensor for the teleparallelism connection determined by the distribution of 
the bases Er(x) [see formulas (56)-(59) together with accompanying com- 
mentary], therefore the above supposition is consistent with the generally 
accepted connection in the literature between the torsion tensor and the 
continuous distribution of dislocations in the body (e.g., Kr6ner, 1960; 
Bilby, 1968). However, the affine connection of the form (96) [just as the 
linear connection (95)] has not been considered in the literature. In Part 
II of this work we show that the appearance of the connection F~b of the 
form (95) has a deeper meaning, both physically and geometrically. 

6. C O N C L U S I O N S  AND REMARKS 

The introduced postulate of metric uniformity means that the material 
structure of the body is described by a certain teleparallelism and, parallel 
with respect to it, a Riemannian metric tensor [formulas (72)-(74)]. The 
affine connection, described in terms of the teleparallelism, but which is 
not its connection [formula (96)], is the support for the physical interpreta- 
tion of this geometry as the one describing the distortion of the crystal by 
the continuous distribution of dislocations [commentary after formula (96)]. 
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The teleparallelism also allows to define the basic measures of deforma- 
tion used in plasticity theory: plastic distortion determined by the irremov- 
able distortion of the crystal structure, and elastic distortion determined by 
the elastic (removable) deformation of that structure. The Riemannian 
metric tensor determines, together with the elastic distortion, another vari- 
able used in the theory of plasticity: the elastic strain of the distorted crystal 
structure. The appearance of  the measures of  deformation used in plasticity 
theory allows us to combine the torsion tensor of the material structure 
[formula (92)] and the considered Riemannian metric tensor with the 
internal forces acting in the body with the distorted material structure. This 
can be done in such a way that the second law of thermodynamics is satisfied 
(Sidoroff, 1975). 

Finally, we observe that in continuum mechanics the description of 
the properties of a solid body by using both teleparallelism and the Rieman- 
nian metric tensor appears in the examination of  the dependence of  stresses 
on the deformation gradient (Wang and Truesdell, 1973). This dependence 
described indirectly the properties of the material of  the body. In the case 
of a crystalline solid, such an approach has the imperfection that it intro- 
duces a dispensable element in the description of the geometry of the 
distorted material structure of the body- - the  notion of stress. 

APPENDIX 

In this paper  we use the following designations; 
E is three-dimensional real Euclidean vector space with scalar product 

designated by a. b. 
GL(E) is the group of all nonsingular tensors _A c E |  
G(E) is the group of all nonsingular affine maps in E, considered as 

the semidirect product of  groups (E, +) and GL(E), i.e., 

G(E) = Ea  GL(E) 

with the group structure in the form 

(_a, _A)(#, _B) = (a +_A_b, _A_B) 

(_a, _A)- '  = ( - _ A - ' a ,  _A- ' ) ,  e = (0, ! )  

where 1 is the tensor realizing the identity map and the elements (_a, _A) act 
in E according to the rule 

(_a, _A)_x = _A_x+_a 
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E(E)  is the Euclidean group considered as the subgroup of G(E) in 
the form 

E(E)  = E D O ( E )  

where O(E) is the orthogonal group on E. 
SL(E) = {A c GL(E): det _A = 1} is the group of all nonsingular tensors 

realizing the linear maps in E preserving the orientation and the volume 
(so-called special linear group). 

E is the point space on E, i,e., the set E in which the transitive and 
effective action T(E) of the Abelian group (E, +) is defined in the form 

T(E) = {r E-->E, _acE} 

T _ a o T  b = T b O T a  .-~ T_a+b - 

This action allows us to define the atone structure I in E by the rule 

l: E x E ~ E ,  P Q : I ( P , Q )  

V P  c E, I(P, ~-_~(P)) = g 

The localization of this affine structure at the point O c E is the map q~o 
defined as 

~ o :  E ~ E ,  qbo(P) = OP 

The localization qbo induces the action �9 in E of  the group G(E): 

= {qb(_~,_,3) = @o'o(a, A)o@ o :E  ~ E;  (a, A) c G(E)} 

I rE  = R 3, then we identify GL(R3),  O(R3), and S L ( R  3) with the groups 
of real 3 x 3 matrices respectively nonsingular, orthogonal, and unimodular 
with positive determinant. In the sense of this identification, the group 
G (R  3) is isomorphic with the group of matrices G(R3) ,  ~ G L ( R  4) of  the 
form 

( a , A ) , =  A ~ , A c G L ( R 3 ) , a c R 3  (A1) 

so that, in the sense of matrix multiplication 

(_a, _A).(b, _B). = (a +Ab,  _A_B). 

(_a, _A)~r 1 = ( - A - i  a, A - l ) , ,  e = (9, ! ) .  (A2) 

(_b, _B).(_a, A).(_b, B_ ) ~' = ( B__a + (I_ - BAB-')b_, _nAB-l),  

where _/is the identity matrix. 
The Iwasawa decomposition of the group S L ( R  3) is its decomposition 

in the form (Barut arid R~tczka, 1977) 

SL( R 3 ) = K ( R3) D(  R 3) W(R 3) (A3) 
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where K ( R  3) = SO(R3), the group of proper orthogonal matrices [maximal 
compact subgroup of SL(R3)], D ( R  3) is the diagonal matrix group [Abelian 
subgroup of SL(R3)]: 

D ( R  3) = {_A = diag(A1, A2, A3): AIA2A3 = 1, Aa E R} (A4) 

The group D ( R  3) describes the extensions in three perpendicular directions 
(preserving the volume). W(R 3) is the nilpotent group called the Weyl 
group, consisting of matrices of the form 

W(R 3)= A=_A(a,/3, y ) =  0 1 y c~,/3, y 6 R  (A5) 

0 0 1 

Weyl group matrices describe so-called simple shear, that is, the deformation 
changing a cube into a parallelepiped. 

The designation of  a rotation in R 3 by Q(O) menas that the matrix of 
this rotation can be represented, in a suitably chosen Cartesian coordinate 

COS0 - s in0  ! I 
sin 0 cos 0 , 

0 0 

system, in the form 

Q(o) = 0-< 0 --- 27r (A6) 

Lorentz transformation in R31 [i.e., with the signature metric ( - + + ) ]  
can, modulo rotations around the "time" axis, be represented by a matrix 
of the form 

= II L~ II = [ /3~' 3' 
0 0 !1 ~=(1-/3~) -'=, 1/31<a (A.7) 

In this representation, the matrix _L describes a transformation on the 
hyperbolic plane (x 1, x 2) of  the form 

X t l  ~_ ,F(/3X2--t- X 1) 

x '2= ~(x~+/3x ~) (A8) 

X r3 ~ X 3 

The formulas (A8) considered as the transformation on the Cartesian plane 
x 3 = const describe the deformation called pure shear, i.e., the deformation 
changing a square into a rhomb, with the value of this shear /3 = tg  a, 
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I 1< ~r/4 (a is the shear angle). Conversely, the equations defining the 
pure shear on this plane (Z6rawski, 1965) 

LI1 __-- L22 = y 

I--,21: L l l  = L12:L22 = fl  (A9) 

L11L22- L12L21 = 1 

have a solution if and only if/3 2 < 1. From (A9) it follows, then, that 3/has 
the form in (A7) and the inequality y -  1 resulting from it means the 
existence of the extension along the axes x I and x2; /3 = tg a means the 
rotation of the material fibres (initially parallel to the axis x 1 or x 2) by the 
angle a. 

RREFERENCES 

Barut, A. O., and R~czka, R. (1977). Theory of Group Representations and Applications, PWN, 
Warsaw. 

Bilby, B. A. (1968). In Mechanics of Generalized Continua, E. Kr6ner, ed., p. 180, Springer- 
Verlag, Berlin. 

Goedecke, G. H. (1974). Journal of Mathematical Physics, 15, 789. 
Giinther, H., and Z6rawski, M. (1985). Annalen der Physik, 42, 41. 
Fosdick, J. E. (1966). In Modern Developments in the Mechanics of Continua, S. Eskinazi, eds., 

p. 109, Academic Press, London. 
KriAner, E. (1960). Archives of Rational Mechanics;, 4, 273. 
KrSner, E. (1985). In l~islocations and Properties of Real Materials, p. 67, The Institute of 

Metals, London. 
Marsden, J. E., and Hughes, T. J. R. (1978). In Nonlinear Analysis and Mechanics, R. J. Knops, 

ed., p. 30, Pitman, London. 
Morzymas, J. (1977). Applications of Groups in Physics, PWN, Warsaw (in Polish). 
Rogula, D. (1976). In Trends in Applications of Pure Mathematics to Mechanics, G. Fishera, 

ed., p. 311, Pitman, London. 
Rumer, J. B. (1956). Investigations in 5-Optics, GITTL, Moscow (in Russian). 
Sidoroff, F. (1975). Archives of Mechanics, 27, 807. 
Stawianowski, J. (1985). Reports of Mathematical Physics, 22, 85. 
Srivastava, P. P. (1983). Nuovo Cimento, 75A, 93. 
Wang, C. C., and Truesdell, C. (1973). Introduction to Rational Elasticity, Noordhoff, Leyden. 
Weyl, H. (1929). Zeitschriftfiir Physik 56, 330. 
Z6rawski, M. (1965). Bulletin of the Polish Academy of Technical Sciences, XIII, 313. 


